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SUMMARY 

A disturbance in the exosphere generates waves in three 
partially separable modes. These modes a re  described by con- 
sidering the vorticity about a line of force, the two-dimensional 
divergence of velocity in the plane perpendicular to the line of 
force, and the component of velocity along the line of force. The 
propagation of vorticity is one-dimensional and there is no geo- 
metrical attenuation; energy is lost only through the finite con- 
ductivity of the medium. The propagation of the longitudinal 
velocity component is almost one-dimensional but is heavily 
damped at high frequencies. In a gravitational field, the medium 
is no longer uniform and at low frequencies the modes a r e  
coupled in a complicated way. For parallel magnetic and gravi- 
tational fields, the vorticity mode is still separable and gravity 
leads to anisotropic dispersion in the other modes. 
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SPECTRUM OF 
HYDROMAGNETIC W A V E S  IN THE EXOSPHERE* 

by 

Gordon J. F. MacDonald t 

Goddavd Space Flight Centev 

INTRODUCTION 

The theory of magnetic s torms has undergone a remarkable development in the past 
few years.  A s  early as 1896 Birkeland proposed that magnetic s torms were the result of 
s t reams of particles emitted from the sun and guided towards the earth by the earth's 
magnetic field. Chapman and Fe r ra ro  (References 1, 2, and 3) elabnrated on this solar 
particle theory, which presumes that the space between the earth and the sun i s  a vacuum 
and that the induced currents in the plasma are propagated with the speed of light. 

Investigations of whistlers by Storey (Reference 4) and of zodiacal light by Behr and 
Siedentopf (Reference 5) indicated that interplanetary space contains a resident ionized 
gas with a density of a few hundred electrons/cm3. A recent investigation of the zodiacal 
light by Blackwell and Ingham (Reference 6) limits the density to less than 120 elec- 
trons/cm3 in the outer corona, while further whistler studies suggest a comparable value 
for the upper regions of the exosphere. The presence of a resident interplanetary ion- 
ized gas requires that the propagation of a solar s t ream into the earth's field be treated 
as a problem in hydromagnetics (Reference 7). Dessler and Parker  (Reference 8) have 
undertaken a detailed investigation of a hydromagnetic theory of geomagnetic s torms [an 
alternative development is due to Piddington (References 9, 10, and ll)] : The magnetic 
s torm results from fluctuations in the intensity of particles streaming from the sun, and 
disturbances are propagated through the exosphere as hydromagnetic waves. On reach- 
ing the base of the ionosphere, the hydromagnetic signals are transmitted through the 
atmosphere as ordinary electromagnetic waves at the speed of light. In the lower 
ionosphere, with its high concentration of neutral particles, the propagation is compli- 
cated and may take the form of a diffusing electromagnetic wave. The hydromagnetic 

'Also published in I .  Geophys. Res.  66(11):3639-3670, November 1961. 
tNow at the Institute of Geophysics and Planetary Physics, University of California. 
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theory of geomagnetic s torms thus proposes that the magnetic signal is transferred 
through the exosphere at the local Alfv6n wave velocity and through the un-ionized at- 
mosphere at the speed of light. 

Dessler and Parker ,  in their  development of the hydromagnetic theory, emphasize 
the characteristic t imes associated with various events in a magnetic storm. Dessler, 
Francis and Parker  (Reference 12) show that the time taken for hydromagnetic waves to 
pass  from the solar plasma front to ground level is on the order of a few minutes. This 
prediction is in accord with the observed rise time of a sudden commencement. [The 
simultaneity of the world-wide increase in intensity of the horizontal component is open 
to question because varying standards of timing a r e  used by geomagnetic observatories. 
Williams (Reference 13) finds that sudden commencements a r e  registered first in the 
high and middle latitudes.] 

While much progress  has been made in determining the time characterist ics of geo- 
magnetic storms, l e s s  effort has been expended in studying the frequency characterist ics 
of geomagnetic variations. A number of peridiogram, o r  zero-crossing, analyses have 
been made on geomagnetic records.  Because of the noise level and the complicated 
spectra, neither method can lead to reliable spectral estimates. Perhaps the principal 
reason for the lack of spectral estimates is the analog recording usually used with mag- 
netometers and earth current coils, and the difficulty in converting an analog record to a 
digital one. 

The sharp nature of the onset of a magnetic storm indicates a spectrum relatively 
rich at high (cycles per second to cycles per minute) frequencies. The spectrum associ- 
ated with the sharp onset may contain evidence of the source. Dessler and Parker  (Ref- 
erence 8) suggest that there is a high frequency cutoff fixed by the Larmor frequency at  
the source. The long time scale associated with the main phase of the magnetic storm 
suggests that the spectrum will also contain energy at much lower (cycles per  hour) f re -  
quencies. 
micropulsations in the geomagnetic field. These are commonly associated with the onset 
of magnetic storms, and show sinusoidal time variations with periods ranging from a few 
tenths of a second to a hundred seconds (References 14, 15, and 16). It is tempting to in- 
fe r ,  f rom the narrow band of frequencies associated with the low-frequency micropulsa- 
tions, that they represent a resonant mode of the exosphere. 
strengthened by their presence during periods of relative magnetic quiet. 

Furthermore, instruments of sufficient sensitivity establish the existence of 

This interpretation is 

The present study is an attempt to provide a partial background for the separation of 
source effects from those of the medium as a prelude to the spectral analysis of mag- 
netic records.  A major limitation is the neglect of all dissipation. The techniques and 
methodology have a close resemblance to those of acoustics and seismology. 

&f --- -- m 1.11111 1111II I1 I I 1  11111111 1111 1 1 1 1 1  111 I I1  I I III 1111II. 111 I. 
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In the presence of a magnetic field a disturbance is propagated through a uniform, 
electrically conducting fluid by three wave fronts traveling at three different speeds 
(References 17-30). These three modes a r e  illustrated by the base in which the Alfven 
wave velocity is large compared to the velocity of sound: The vorticity about the lines of 
force is propagated one-dimensionally at the Alfven wave velocity; the velocity component 
along the line of force is propagated a: nearly the velocity of sound and the propagation 
is almost one-dimensional; the two-dimensional divergence in the plane pevpendiculav 
to the lines of force, together with the longitudinal component of the magnetic field, is 
propagated almost spherically at the Alfve'n wave velocity. For convenience we will label 
the one-dimensional vorticity mode as the V mode. The nearly one-dimensional sound 
wave is termed the pressure o r  P mode, while the spherically spreading mode is termed 
the transverse or T mode. If the Alfven wave velocity is much l e s s  than the velocity of 
sound, then the V mode remains one-dimensional, the P mode is spherically spreading, 
and T mode is nearly one-dimensional. It should be emphasized that, in general, the so- 
lutions of the equations cannot be resolved into three modes characterized by a velocity, 
and that the wave fronts may interact to give a complicated waveform. 

Part I of this paper presents a review of the theory of the propagation of waves in an 
anisotropic inhomogeneous medium; dissipation is ignored. The dynamical equations 
lead to dispersion relations which, for a fixed frequency, determine slowness suvfaces 
in wave number space. The slowness surface, in turn, fixes the geometry of the 
propagating wave. The concept of group velocity is particularly important, since the 
direction of propagation of the phase of the wave need not coincide with the direction of 
the energy propagation. The J.W.K.B. approximation in the propagation of waves in an 
inhomogeneous medium is considered, and the limitations of the method a r e  stressed. 
The method yields results which a r e  valid only if the wavelength of the disturbance is 
short  compared with the scale length of the variable properties. For many problems in 
hydromagnetic wave propagation in the exosphere this holds true, but the approximation 
is not as good for the interesting low frequency waves. Despite the limitations of the ap- 
proximation, a qualitative picture of the low frequency waves may be obtained. 

Parts II and 111 treat  the propagation of the low frequency hydromagnetic waves with 
the aid of the diagnostic diagrams introduced by Eckart  (Reference 21) in his study of 
classical gravity waves. Such a diagnostic diagram is a projection, in the wave number- 
frequency space, of the regions of allowed propagation modes. At low frequencies it is 
possible for gravity to modify the various hydromagnetic modes. In Part 11, the case of 
the parallel magnetic and gravitational fields is considered, and the slowness surfaces 
and surfaces of constant phase are determined for various frequencies. Gravity leads to 
anisotropic dispersion; but its influence is negligible at high frequencies (periods much 
less than several  minutes). 
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There is a balance of particle and magnetic pressure in the P mode propagation: A s  
the particle pressure decreases, suction i s  created and a magnetic field develops. In 
other words, an increase in the magnetic field is accompanied by a transfer of energy 
from the acoustic field, and the particle pressure decreases.  The ratio of the variation 
in particle pressure to the variation in magnetic pressure is determined by the square of 
the ratio of the velocity of the sound wave to the Alfvkn wave velocity in the T mode. The 
variation of particle pressure during the passage of a T wave in the exosphere is small, 
while the V wave does not alter the thermodynamic state of the medium at  all. 

Part III considers the case of perpendicular gravitational and magnetic fields. The 
propagation is not cylindrically symmetrical if the lines of force a r e  at an arbitrary 
angle to the direction of gravity. A detailed investigation of the influence of the gravita- 
tional field on hydromagnetic wave propagation is carr ied out in the case where the sound 
wave velocity is small compared to the Alfvbn wave velocity, and this is used as an in- 
troduction to the general case. 

The equations of hydromagnetics a r e  continuum equations and imply that the constit- 
uent particles collectively interact. The limiting conditions in the exosphere a r e  con- 
sidered in Part IV. The generation of macroscopic hydromagnetic waves depends on 
whether the disturbances have a length greater than some characteristic length of the 
medium. For the propagation of V and T waves, this characteristic length is the Larmor 
radius of the positive ions. If the disturbance has a characteristic length that is short 
compared to the Larmor radius but small compared to the mean free path, then collision- 
l e s s  hydromagnetic waves a r e  propagated. The critical length involved in the propagation 
of the P mode is the distance a particle must travel before exchanging an appreciable 
fraction of its momentum. 
the particle may t raverse  short  distances compared to the free  path and still exchange a 
substantial portion of its momentum. For representative models of the exosphere, dis- 
turbances at distances of several  earth radii must have length scales that a r e  large com- 
pared to several kilometers in order  that acoustic waves be propagated. The V and T 
waves a r e  propagated if  the leng-th scale is large compared to some hundreds of meters 
in the outer regions of the exosphere. 

Because of the long-range nature of the Coulomb forces, 

The characterization of sources is taken up in Pa r t  V. The V mode is represented 
by a line in the diagnostic diagram, the T mode by a region. The V mode should be char- 
acterized by a narrow spectrum, the T mode by a much broader spectrum. The V mode, 
of course, is generated only if  the source produces vorticity; examples of such sources 
include the exhaust of a rocket motor, the wake of a satellite in the lower exosphere, and 
the turbulent region in the vicinity of a finite amplitude wave. The P and T modes a r e  
generated by pressure pulses; a typical source might be the influx of ionizing radiation 
into the upper ionosphere, giving a pressure pulse of charged particle gas. Such a pres-  
sure  pulse would generate primarily spherically spreading T waves and one-dimensional 
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acoustic waves; but if the discontinuity were sharp enough, vorticity might result. 
proportion of T and P waves generated depends on a comparison of the characteristic 
t imes andlength scales ofthe source with the regularity and wavelength of allowed waves. 
In the exosphere, waves of a given frequency will be predominantly P waves if the source 
has  a small length scale (meters), and T waves if  the source has a larger  length scale 
(kilometers). A satellite traveling in the lower exosphere will generate P waves and 
possibly V waves, but will not excite the T mode. 

The 

Part VI treats the free oscillations of the separable V mode. These a r e  analogous 
to the oscillations of a weighted spring, and have periods dependent on the geomagnetic 
latitude of the line of force. Their f ree  periods a r e  comparable to the periods observed 
in the low frequency micropulsations. The peavl type of micropulsation is interpreted as 
the excitation of a V mode with a narrow spectrum. The time representation of this nar -  
row band is then a modulated sine wave characteristic of the pearl micropulsation. The 
propagation of acoustic waves down the lines of force is analogous to the propagation of 
sound waves in an ear  trumpet because of the convergence of the lines of force. A s  a 
result of this convergence, sound waves of finite amplitude should develop along the lines 
of force. The high viscosity in the outer exosphere controls the diffusion of the wave in 
this region. 
the ionosphere may be important in auroral phenomena. 

The breakup of the finite-amplitude viscosity-controlled wave as it enters 



PART I 

SLOWNESS AND PHASE SURFACES 

The propagation of magnetohydrodynamic waves is anisotropic. In addition, even in 
the absence of dissipation, waves are dispersed at low frequencies because of the action 
of gravity. The description of propagation in an anisotropic medium is aided by the con- 
struction of slowness surfaces in wave-number space at  a fixed frequency and the inver- 
sion of these surfaces to form surfaces of constant phase. In this section certain of the 
geometrical features of the slowness surface and the surface of constant phase are 
reviewed. 

The propagation of a wave can be described in t e rms  of a phase function +(xi ,  t) . 
The surface 

+(xi,t) = constant 

at a given time might correspond to a wave cres t  o r  trough. The phase velocity Ci is the 
velocity of the surface; the wave number k, is defined as the normal to the phase surface, 

and is in the direction of the phase velocity. The magnitude of the phase velocity is 

where the frequency w is defined by w = -a+//at. The wave crests and troughs are at 
right angles to the vector k i  and the wavelength is 27r,4ki I + 

The equations for a given problem define a dispersion relation, a relation between 
ki, xi, and w.  For convenience, the dispersion relation is written in the form 

W(w, ki, xi) = 0. 

6 
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The group velocity U i  = dxi/dt is determined from 

ui = - 
aw 
aki 
awe - 
am 

The existence of a scalar  function 4 corresponds to the conservation of the number 
of waves, o r  equivalent of ki. The existence of 4 implies 

a24 a24 = 
axiat atax, 

or  

aici  
dt+T = 0 (3) 

When Equations 2 and 3 a r e  combined, the equation for the conservation of wave number 
takes the form 

in which use has been made of the fact that k i  is an irrotational vector (Equation 1). Equa- 
tion 4 can be regarded as a form of Hamilton's equation (References 22 and 23). 
The left-hand side is the rate  of change of the wave number following a point moving with 
velocity U j  , the velocity of a group of waves having the wave number k,. The number of 
waves is conserved, provided the dispersion relation is independent of the spatial coordi- 
nate; the right-hand side of Equation 4 vanishes. The coefficients of the partial differen- 
tial equation describing the general physical situation will be a function of position, and 
the right-hand side will be finite. The wave number and frequency must then be inter- 
preted as the local wave propagation vector and frequency. These quantities can be de- 
termined by local arguments, and their propagation in space is then fixed by Equation 4. 
Once k i  is determined in space by the dispersion relations and Equation 4, it is possible 
to determine the phase function from Equation 1. 

The foregoing approach yields a rigorous description of wave propagation, provided 
that a phase function exists, while the usual treatment of wave propagation in an inhomo- 
geneous medium involves two kinds of approximations. 
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The field variable can be written as the product of an amplitude function F and a 
phase function G: 

The variation of the field in time and space is 

The J.W.K.B. approximation neglects the first te rm in comparison to the second te rm on 
the right-hand side of these two equations. This implies that the typical length scale as- 
sociated with the spatial inhomogeneity is large compared to the wavelength. For an in- 
finite medium the phase function G can be taken as G = exp ( i4 )  with the result  that the 
operations of differentiation with respect to time and space yield 

dV 
= ik iV  . 

Under a similar but not identical approximation, the phase function is assumed linear in 
k i  and W. Let L be the length scale in a given direction. Then for t imes limited by 
ut << L the phase function is approximately 4 = k i x i  - u t .  

In the problems treated next, the dispersion relation will be a function of a single 
coordinate, say x 3 ,  and then the phase function will be of the form 

4 = k l x l  + k 2 x z  + I k3ax3  - wt  . 

At a given frequency and point in space it is possible to construct a three-dimensional 
surface in wave number space, determined by 

W(u, k i ,  x i )  = 0. 

This surface will be termed the slowness surface (Reference 24). Every point on the 
slowness surface corresponds to a wave. Some of these waves, however, are disallowed 
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because of the radiation condition, which allows only the propagation of energy outwards 
from the source in an initial-value problem. 

The surface of constant phase, which can be constructed from the slowness surface, 
is the envelope at a given time of waves originating from a source at time t = 0. 

direction of the wave resulting from a point on the slowness surface is along the normal 
to the slowness surface. It should be noted that the direction of the wave number ki and 
the normal to the slowness surface need not be the same. The c res t s  and troughs of the 

The 

waves a r e  then not necessarily at right angles to the direction of 
normal to the slowness surface is parallel to the direction x i  we 

dW 
x i  = constant 

where, at unit time, 

k,xi = w .  

propagation. Since the 
have 

Combining Equations 5 and 6 gives the surface of constant phase at unit time: 

dk, 

dw 
X i  = -- aw . - 

At unit time the surface of constant phase is, then, a representation of the group velocity. 
This interpretation runs into difficulty, however, when the group velocity is a function of 
the spatial coordinate; in that case only the initial waveform can be calculated, and the 
waveform is distorted as the wave progresses through the medium. A further complica- 
tion arises from dispersion. Waves are dispersed if  W(ki, x j  , w )  is not homogeneous in 
k, and w ;  and the phase surface for different frequencies will spread in time. A pulse 
contains a range of frequencies, and there will be a range of phase velocities for a fixed 
direction. 

Once the slowness surface is determined, the surface of constant phase can be cal- 
culated by using Equation 7. A geometrical interpretation of Equation 7 is that the vector 
x i  is in the direction of a perpendicular dropped from the tangent plane of the slowness 
surface to the origin; and the magnitude of x i  is proportional to the frequency and in- 
versely proportional to the length of the perpendicular. The vector xi is the pole, with 
respect to a sphere of radius w l / *  centered at the origin, of the tangent plane to the slow- 
ness  surface; and this pole of the tangent plane is then the reciprocal pole of the slow- 
ness  surface with respect to the sphere of radius w 1 / 2 .  The description of the wave 
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number surface as a slowness surface resul ts  f rom the fact that the phase surface rep- 
resents  the progress of the wave front in time, and its reciprocal is the surface in wave 
number space. 

The geometrical characterist ics of the slowness surface determine the geometrical 
configuration of the surface of constant phase. A qualitative picture of the surface of 
constant phase can be obtained from the slowness surface without detailed calculations if 
certain geometrical correspondences are noted. Each tangent plane to the slowness su r -  
face corresponds to a point on the surface of constant phase. Reciprocally, to every tan- 
gent plane on the surface of constant phase there corresponds a point on the slowness 
surface. A tangent plane at a point P of the slowness surface with N contacts corresponds 
to a point on the wave surface with N tangent planes. A parabolic point - i.e., a point at 
which one or  both of the principal curvatures vanish (References 25 and 26) -on  the 
slowness surface is reciprocal to a point on an edge of regression on the surface of con- 
stant phase. Further, if a tangent plane on the slowness surface touches the surface on a 
curve of tangency, all points on the curve correspond to a single point (conical point) on 
the constant phase surface. A s  an illustration of these geometrical correspondences, 
consider a plane with a circular bump in it. In the region away from the bump, the tan- 
gent plane to the slowness surface is in contact at innumerable points. This tangent 
plane corresponds to a single point on the surface of constant phase. Associated with the 
bump will be a circle of parabolic points which maps into a circular cusp in the constant 
phase surface. As the bump is reduced and approaches a plane, the surface of constant 
phase approaches a point. If the slowness surface is a plane, then the propagation is 
one -dimensional. 

A picture of the relative amplitudes of waves traveling in different directions can 
also be obtained from a consideration of the slowness surface. Each tangent plane to the 
slowness surface corresponds to a wave, and a tangent plane with many points of contact 
represents the sum of these waves. The amplitude of that par t  of the phase surface cor- 
responding to the tangent plane with many points of contact should exceed the amplitude 
of that par t  of the phase surface resulting from a tangent plane with a single point of con- 
tact to the slowness surface. As an example, the conical point on the surface of constant 
phase corresponding to a curve of tangency on the slowness surface should have a larger  
amplitude after a given distance of propagation than have the corresponding points on the 
constant phase surface with only a single tangent point. If the slowness surface is a 
sphere, then the corresponding surface of constant phase is also a sphere, and the ampli- 
tude decays as l / r .  If, on the other hand, the surface is a plane, there is no geometrical 
attenuation. These two cases  provide l imits for the geometrical attenuation of waves. 
Lighthill (Reference 27), in a detailed investigation using the saddle point method in the 
asymptotic evaluations, finds that points on the cuspidal edge decay as r - 5 / 6  while coni- 
cal points decay as r-”‘ . 
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The determination of the surface of constant phase can be similarly made for dis-  
persive waves, but the spread in time must be considered. If the surface of constant 
phase is a sphere, the disturbance grows as a hollow spherical shell and the geometric 
attenuation is r - 3 / 2  . 

The geometrical correspondences between the slowness surface and the surface of 
constant phase will be illustrated in detail in the treatment of hydromagnetic waves per- 
turbed by gravity. 



P A R T  II 

PARALLEL MAGNETIC AND GRAVITATIONAL F IELDS 

Equations of  Motion 

The simplest description of the motion of an electrically conducting fluid in the pres-  
ence of a gravitational field with a potential e ; ~  is 

where g is the gravitational constant a t  some reference altitude and .(xi) is the gravita- 
tional altitude. A source te rm q ,  the net acession of heat, is included in the equation of 
entropy conservation (Equation 11). 

The description yields a good approximation, provided a number of restrictions a r e  
met: 

1. There exists a scalar fluid pressure p which is a function of the 
entropy s and density P .  

2. Ohm's law is taken in the form B, = E ,  j k B j ~ k  . 

3 ,  The usual assumptions of magnetohydrodynamics a r e  made in that 
the displacement current is neglected and all velocities a r e  small 
compared with the velocity of light. 

4, Dissipation due to the finite viscosity and thermal conductivity of the 
fluid is neglected. In addition, Coriolis forces a r e  neglected, though 

12 
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the effects of rotation on the gravitational field can be included by 
appropriate choice of the gravitational altitude. 

The equation of the conservation of mass  (Equation 10) can be combined with the 
thermodynamic relations to relate pressure and density variations. Thus, 

where C is the velocity of sound while y = c p V  is the ratio of the specific heats. 

The set  of non-linear equations (Equations 8 through 12) can be reduced to a tracta- 
ble linear form by the perturbation scheme 

p = Po + p ,  + * . .  q = q ,  + ... 

P = Po + P I  + ' . *  v i  = v;+ 

where the quantities p o t  B:, 

well's equations (Equation 9) a r e  satisfied identically to zero order .  
etc., represent the initial state of the fluid and field. Max- 

Equation 8 yields 

The relative magnitude of the two te rms  on the right-hand side of Equation 13 determines 
whether the initial particle distribution is gravitationally o r  magnetically controlled. 
For  the present purposes the usual assumption that gravity determines the particle dis- 
tribution over most of the exosphere is made. This need not hold true, and the particle 
distribution may be influenced greatly by the magnetic field. 

The equations, to the first order ,  are then 
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JPO av . ap 
a t + V i a x ,  = - p c z d  0 0 axi  ' 

where the unprimed variables represent the perturbed quantities. The initial pressure 
and entropy gradients, which appear in these first order equations, a r e  not independent. 
Using the standard thermodynamic relations 

we obtain for the entropy gradient 

J s o  - g t T o  J z  
J x i  

- 

P 

where the adiabatic temperature gradient i s  

a T ~  gaoTo J z  
a x i  - c o  J x i  ' 
_ _ -  ~~ 

P 

and a. is the coefficient of thermal expansion in the initial state. The velocity of sound, 
coefficient of thermal expansion, and heat capacity at constant pre.ssure satisfy the s im- 
ple relations 

0 = -  R ,  
( Y o - l )  a. = To- ' ,  

in an ideal gas. An ionized gas composed equally of electrons and singly ionized atoms 
has  an effective value yo = 4/3, since the value of yo for the ions is 5/3 and the electrons 
will behave more or  less  isothermally corresponding to yo  = 1. 
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Combined Magnetic and Gravitational Fields 

A marked simplification occurs in the case of a constant magnetic field with lines of 
force parallel to the gravitational f ie ld  Since the fields and motions a re  cylindrically 
symmetrical, the initial magnetic field is taken along the x 3  axis and the effects of cur- 
vature of the equipotential surfaces are neglected. Thus, 

B o  = (O,O,Bo) , 

The first order perturbation equations reduce to 

ab, ab, 

- ;:+v3 = 0 ,  

where 

J 

is the normalized fluctuation in the magnetic field; 
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is the Alfv6n wave velocity in the undisturbed medium; 

is the normalized fluctuation in entropy; and N is the Vaisala  frequency (Reference 21) 
given by 

The Va i saa  frequency N is interpreted here as the frequency of oscillation of a small 
mass  of fluid when displaced from its zero-order position in the gravitational field and 
allowed to move freely. A s  will be shown, motions with frequencies that are large com- 
pared to N are not influenced by gravity. In a perfect gas the V a i s s a  frequency takes the 
form 

and, if the fluid is isothermal, then 

Equations 14, 15,  16, and 17 form a coupled set for v i .  Their complexity is reduced, 
for a homogeneous fluid, by choosing a new set  of variables; and more importantly, one 
mode of motion is separable (References 20, 28, and 29). A similar separation is possi- 
ble in the presence of a gravitational field, provided that gravity and the lines of force 
are parallel. Consider a motion in which p = 0 ,  V,  = 0 ,  b, = 0. The pressure equation 
then implies 
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and there is no variation of entropy, i.e., 

_ -  aQ a t  - 0; 

Equations 14 and 15 combine to give 

0 = 0. 

where 5 is the vorticity, or spin, of the fi6-A about the line of force and j is t.-e normal- 
ized current density: 

Equations 18 yield 

a 2 5  , 
- CA’ ~ 

a ‘5 
a t 2  ax; 
- -  

The vorticity about the line of force is propagated along the line of force at the Alfv6n 
wave velocity as a one-dimensional wave. The thermodynamic state of the system re -  
mains constant, since the variations in entropy and pressure vanish. The wave velocity 
varies with the density of the fluid. 

The P and T modes a r e  not separable. The variation of pressure,  longitudinal com- 
ponent of the magnetic field, component of velocity along the magnetic field, and entropy 
in these modes a r e  governed by the system of equations 

- a o + v 3  = 0 .  
a t  J 

We note that Equation 19 reduces to a spherically spreading Alfvdn wave if p = 0, g = 0. 

I 
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As a preliminary to the consideration of wave propagation in an inhomogeneous 
medium, consider Equation 19 for g = 0. The dispersion relation is 

where 

The propagation is thus symmetrical about the X, axis. 

Given values of the wave number k, and frequency W ,  Equation 20 determines K ~ .  

The value thus determined might be negative; but K must be m a l ,  since the system is con- 
servative and is assumed stable. The values of frequency and wave number resulting in 
a negative K' do not give an allowed eigen solution. The regions in the ii - k, plane of 
permitted waves a r e  shown in Figure 1. The upper left-hand region of the diagram is 

Figure 1 - Diagnostic diagram for hydromagnetic wave propagation i n  a uni- 
form f lu id.  The upper region 
i s  a region of T mode propagation. The narrow stippled region i s  the P mode 
region. 

The diagram i s  scaled so that C,/C,= 0.5. 
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bounded by the line w = CAk3.  

lutions is bounded by the lines w = Cok3 and w = k 3 C A C o / i m  . 
the wave number K becomes infinite. 
wavelength. 

Over this region, K~ > 0. A second region of allowed so- 
Along this last line, 

This is interpreted physically as a vanishing 

The diagram is scaled so that p = co/cA = 0 . 5 .  The upper left-hand region corre-  
sponds to the propagation of the T mode in which two-dimensional divergence is propa- 
gated at speeds comparable to the Alfv&n wave velocity. The narrow region corresponds 
to the propagation of the P mode. The lines bounding the regions of allowed solutions are 
straight, since the dispersion relation is homogeneous in the frequency and wave number; 
the T and P modes are propagated in a uniform medium without dispersion. It should be 
noted that the line CI: = CAk3 corresponds to the V mode, which has been separated Sy the 
choice of variables. 

The dispersion relation of Equation 20 may be written in the form 

where w = Co/CA, and 1 = w/cA so that the unit of distance i s  C A / L  

The slowness surface corresponding to the diagnostic diagram of Figure 1 is shown 
for a fixed frequency w in Figure 2. The complete surfaces a r e  obtained by rotating the 
k ,  - K plane about the k ,  axis and reflecting across  the plane k ,  = 0. The two sheets of 
the slowness surface determined by the dispersion relation of Equation 22 a r e  a sphere 
flattened along the K direction and a near-plane with a bump towards the origin. In addi- 
tion, the plane representing the one-dimensional propagation of the vorticity (V mode) 
has been added. The near-sphere corresponds to the spherically spreading T mode. 
This is noted by allowing P to approach zero in Equation 22. A s  P approaches zero, the 
propagation surface becomes a sphere corresponding to the spherical propagation of 
AlfvGn waves. 

Substituting k ,  = 1 into the pressure equation (Equation 19) we obtain 

where 

BOB,’ 

P, = poC;b, = - 47v 

is the variation in the magnetic pressure.  
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Figure 2 - Slowness surfaces for the propaga- 
t ion of hydromagnetic waves in a uniform 
medium. The complete surfaces are obtained 
by rotation about the k, axis and reflection 
across the K plane. The uni t  of wave number 
i s  o-/Cn. The lines of force are parallel to 
the k , direction. The near-sphere corre- 
sponds to o T mode propagation; the plane a t  
k, = i I i s  the V mode propagation, and 
the plane wi th  a bump describes the P mode 
propagation 

Note that in the T mode a small fluctuation 
in particle pressure results in a larger fluctua- 
tion in the magnetic perturbation pressure,  pro- 
vided p < 1. The T mode propagates a fluctua- 
tion in the longitudinal magnetic field plus a 
slight condensation of the changed particles. 

Over most of the planar sheet we have 

k, = 

which corresponds to the’ one-dimensional 
propagation at  a modified sound velocity 

In order to obtain the variation of pressure in 
the P mode we substitute Equation 23 into the 
pressure equation, with the result p + p, = 0 .  

Thus, the excess pressure p and the magnetic 
pressure p, a r e  in approximate balance in the 
P mode. As p drops and suction develops, a 
magnetic field is generated. A s  the particle 
pressure increases, energy is transferred from 
the magnetic to the acoustic field. 

The T mode, with a nearly spherical slowness surface, will undergo geometrical at- 
tenuation as l / r .  The V mode, with a planar slowness surface, undergoes no geometrical 
attenuation. The propagation of the P mode is more complicated. 

Spreading o f  the P Mode 

The surfaces of constant phase can be constructed from the slowness surfaces. Fig- 
ure  3 shows the waveform at unit time for a source located at the origin at  time t = 0 

and for :i 
is cylindrical symmetry about the x 3  axis and across  the x 2 - x 3  plane. The unit of dis-  
t ; i t i c c  is ( ’ A t .  The slowness surfaces for the V mode degenerate to a point on the x 3  axis. 
‘ l ’h(~ T n i o d ( ~ ,  represented by a sphere flattened along the K direction in wave number 
S I ) ; I [ * ( , ,  I I I ; I ~ I S  into a sphere flattened in the x 3  direction. The inverse property of the 

0 6 ,  0 . 8 .  The magnetic lines of force a r e  taken along the x 3  axis, and there 
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Figure 3 - Surfaces of constant phase for a uniform medium. The complete 
surfaces are obtained by rotation about the x 3  axis and ref lect ion across the 
x I - x 2  plane. The cusped triangles correspond to a P wave, the flattened 
sphere to a T wave. 

slowness surface i s  illustrated in the wave surface for the T mode. The phase velocity 
in the direction perpendicular to the lines of force i s  greater than the velocity along the 
lines of force. 

The one-dimensional P mode has a constant phase surface in the form of a cusped 
surface with a conical point on the x 3  axis. This cusped surface is subtended by a cone 
with a vertex a t  the origin. The angular diameter of the cone increases with increasing 
p u p t o p  = 1. 

For P < 1 the propagation of the P mode is in some ways analogous to the phenom- 
enon of conical refraction in optics made of anisotropic crystals (Reference 19). The 
slowness surface has a dimple which is concave in the direction of the magnetic field; 
the presence of this dimple leads to a circle of parabolic points, and it is these parabolic 
points that give r i se  to the cuspidal edge on the phase surface. 

For large values of K ,  the slowness surface becomes tangent to a plane perpendicu- 
lar to the x3 axis; this plane corresponds to the conical point on a surface of constant 
phase. The points along the cuspidal edge geometrically attenuate at a slower rate than 
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do all other points on the surfaces excepting the conical point, which decays at the 
slowest rate. The P mode is then dominated by the cuspidal circle and conical point. A 
projection of the wave amplitude onto a plane perpendicular to the direction of propaga- 
tion would show a circle around a central dot. 

The transition from ,B 1 to ,B > 1 i s  illustrated in Figure 4. A s  the sound velocity 
i s  increased at constant Alfvkn wave velocity, the phase surface for the P mode becomes 
a flattened sphere and the phase surface for the T mode is a cusped surface bounded by 
a cone with a vertex at the origin. The angular diameter of the cone bounding the T mode 
becomes l e s s  with increasing p .  

Over much of the exosphere, /i i s  very small. In the limit of small p the cusped 
triangle generating the P phase surface reduces to a point maintaining, the cuspidal form. 
Then the propagation of the P mode is very nearly one-dimensional. The T mode propa- 
gation becomes more nearly spherical as decreases.  At high frequencies, energy may 

1. 

x 
n 

x + 
x 
v 

0. 

Figure 4 - Constant phase surfaces iI lustrating transistions from T mode propa- 
gation to P mode propagation 
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be propagated in the exosphere by one-dimensional V waves, nearly one-dimensional P 
wave, and spherically spreading T wave. 

Gravitational Coupling 

The field equations (Equations 14 through 17) combine to yield the dispersion 
relation 

where N, i s  a modified Vaisda  frequency and 

It should be noted that the dispersion relation re fers  only to the coupled P and T modes. 
The V mode i s  unaffected by gravity, provided R dz/rlxi is along the line of force. 

The diagnostic diagram corresponding to Equation 24 is shown in Figure 5. The 
regions of allowed propagation a r e  limited by the curves of vanishing wave number K ,  

k3 

Figure 5 - Diagnostic diagram far hydromagnetic wave propagation with the 
lines of force paral lel to the direction of gravity. The diagram i s  scaled with 
,b = 0.5. The upper left-handregion corresponds to perturbed T mode propaga- 
tion, the narrow stippled region to P mode propagation, and the lower cross- 
hatched region to gravitationally controlled propagation. 
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and by the curve 

(C,' + C i )  w z  - C:C,'k; - CtN2-C:N: = 0 

along which K becomes infinite, corresponding to zero wavelength. The curves bounding 
regions of allowed propagation a r e  no longer straight lines, and the dispersion relation 
is not homogeneous in the wave number and frequency. For frequencies near N,,  the 
propagation is dispersive. 

At large frequencies and wave numbers K ~ ,  the diagnostic diagram is similar to that 
shown in Figure 1 .  There a r e  two modes of propagation; a P mode and a T mode. Grav- 
ity dominates the propagation a t  low frequencies and large wave numbers. The charac- 
terist ic frequencies noted in Figure 5 a r e  N,,  w,, w ; ,  and N:, where 

Nl 
w ,  = 

1 

(1 - p)? 

w t  = N: + P 2 N 2  , 

For P < 1, the relative magnitudes of the four frequencies a r e  N, < N, < w 2  < w ,  . 

The nature of the waves in the various regions of allowed propagation in the diagnostic 
diagram is best obtained by constructing the slowness surface and the corresponding sur -  
faces  of constant phase. The dispersion relation (Equation 24) is written in te rms  of the di- 
mensional quantities Y = NJw and a = N/w as 

P Z k 3 4 -  [ 1 2 ( l - y 2 )  + P 2 ( 1 2 - ~ 2 ) ] k :  f 1 2 ( 1 - Y 2 ) ( I z - K 2 )  - P 2 1 z ( 1 - ~ z ) K z  = 0. 

The wave numbers are thus measured in units of I = w/cA. 

The slowness surfaces for the values y = 0.5 and 0.9 are shown in Figure 6. The 
value of p is set  at 0.5. There is symmetry about the k,axisandacross the k , - k ,  
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Figure 6 - Slowness surfaces for parallel gravity and magnetic fields. The complete 
surface i s  obtained by rotating about the k, direction and reflecting across the 

The planar sheets correspond to perturbed P mode propagation, the 
kdl i~tkte?i '~~~eres to T mode propagation. The propagation i s  dispersive. 

plane. The propagation of both the modified T and P mode i s  dispersive, with the high 
frequency T and P components traveling a t  a slower rate than the low frequency com- 
ponents. In addition to the two modes shown, the V mode is propagated without disper- 
sion. Comparing Figure 6 with Figure 2, we note that for Y = 0.5 the T mode is affected 
only slightly by gravity, while the P mode is markedly changed. 

The dispersion resulting from gravity is clearly illustrated in Figure 7 where the 
constant phase surfaces corresponding to the slowness surfaces of Figure 6 a r e  shown. 
The lower frequency y = 0.9 wave travels faster than the high frequency wave. In 
addition, the angular diameter of the cone enclosing the low frequency wave is larger .  
This corresponds to the fact that at low frequencies in the diagnostic diagram the lines 
bounding the region of propagation of the P wave become more nearly parallel to the k, 
axis. The values of the critical frequencies a r e  y1 = 0.87, y2  = 0.954, for P = 0.5. At 
frequencies greater than Y = 0.87, the T mode is almost unperturbed by the action of 
gravity. The transition region between frequencies w1 and w 2  is illustrated in Figure 8, 
where the slowness surfaces for y = 0.9. 0.95, and 1.0 are shown. As the frequency 
decreases with increasing y ,  the slowness surface for the T mode propagation shrinks to 
a point. At frequencies l e s s  than N, there is no propagation in the T mode. At  frequencies 

I 



26 

1.0 

3 
n 
N 
2 + 
N! 
X 
v 

0.5 

I 

GRAVITY AND MAGNETIC 
FIELDS PARALLEL TO X3 

8=0.5 

0.5 1.0 
C 
G 

C 
G 

x3  
Figure 7-Constant phase surfaces corresponding to the slowness surfaces of Figure 6. Both the 
T mode (nearly spherical phase surface) and the V mode (cusped surface) are highly dispersive. 
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Figure 8 - Slowness surfaces a t  frequencies near 
to the cri t ical frequency N 1 .  The complete sur- 
faces are obtained by rotation about the k, axis 
and reflection across the k ,  -k, plane. 
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Figure 9 - Slowness surfaces at  frequen- 
cies lower than N1. 
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intermediate to w 2  and N , ,  the propagation surface for the T mode becomes greatly flat- 
tened in the K direction (see also Figure 9). 

There is no propagation of the T mode for frequencies l e s s  than w 2  where a new 
region appears in the diagnostic diagram. The slowness surfaces for the transition re- 
gion w2-N2 are shown in Figure 9, and the corresponding surfaces of constant phase in 
Figure 10. A s  the frequency i s  lowered, the angular diameter of the cone bounding the 
surface of constant phase increases. It i s  noted that the conical point leads, rather than 
follows, the propagation, as is the case for an unperturbed P mode. A s  the frequency is 
lowered still further, the propagation again becomes spherical (see also Figure 11). The 
slowness surfaces for y = 1.1, 1 . 2 ,  1.3, and 1.5 a r e  shown in Figure 11, and the cor- 
responding surfaces of constant phase in Figure 12. The P propagation for Y = 1.1 is a 
wave spreading about the x3 direction. For Y = 1 . 2  the surface becomes a near-sphere, 
but flattened in the direction perpendicular to the line of force. 

Further insight into the nature of the waves in the lower left-hand corner of the 
diagnostic diagram i s  obtained by examining the relative variations of particle and 
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Figure 10 - Constant phase surfaces corresponding to the slowness surfaces of Figure 9 .  
The complete surface i s  obtained by rotating about the l ine ( x ?  + x:) = 0 and across 
the plane x3 = 0. The conical point leads the propagation. 

... . .. . . . . . . . . .. . . 
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magnetic pressure.  Combining the equations in entropy, pressure,  and v3, we have 

As an example, consider propagation for the frequency corresponding to y = 1.0  (see Fig- 
u r e  8). Over most of the slowness surface 1c3 = 1 and p + (1 - aZ)pm = 0. 

An increase in particle pressure results in a 
decrease in local magnetic pressure provided that 
a < 1. The balance is similar to the balance that 
exists in a P wave but is modified by the presence 
of the coefficient multiplying the magnetic pres-  
sure .  At lower frequencies the propagation ap- 
proaches that of a T mode. Thus, for y = 1 . 5  the 
propagation along the direction k, = 0 gives 

(1 - Y’P) = (1 - a’) P’ P, 

while the propagation along the direction K = 0 

gives 

[(l - 7’) - P’]P = (1 - a’) P’P, * 

The propagation is intermediate between a T mode 
and a P mode, with changes in particle pressure 
being balanced in part  by alterations of the mag- 
netic pressure.  

k3 

Figure 1 1  - Slowness surfaces i n  the lower 
crosshatched region of Figure 5 .  

The foregoing arguments show the importance 
of the frequency N, in separating those waves that 
propagate as T o r  P modes from those waves that 
propagate as modes highly modified by gravity. 

The frequency N is of more fundamental character from a particle point of view, since it 
is the oscillation frequency of a parcel of charged particles. A further interpretation of 
N results f rom examining the phase relation between the variations in pressure and en- 
tropy. The entropy and pressure equations combine as 
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Figure 12 - Constant phase surfaces corresponding to the slowness surfaces of Figure 1 1  

where p and Q are complex numbers with a relative phase given by tan-' (k3C;/g) . The 
variation in entropy leads the variation in pressure for  w 

for w > N .  

N ,  and the reverse  is true 

The J.W.K.B. approximation gives a qualitative picture of wave propagation where 
the density of the medium varies  because of the presence of the gravitational field. The 
parameters  C,, C,, N ,  and N, that appear in the dispersion relation will be functions of 
position, so that the dispersion relation i s  also a function of the vertical coordinate. The 
waveform calculated is an approximation for a time that is short  compared with the scale 
length divided by the group velocity. These considerations indicate the importance of the 
parameters  N and N, to the propagation of low frequency hydromagnetic waves. The prop- 
agation is dispersive at these low frequencies. At frequencies less than w2 a new mode 
appears, incorporating some of the features of the T mode and the P mode, and bearing 
some resemblance to the classical gravity wave (Reference 21). 



PART 111 
PERPENDICULAR M A G N E T I C  A N D  GRAVITATIONAL FIELDS 

c 

The effect of a gravity field i s  to couple the P and T modes at low frequencies. If 
the magnetic and gravitational fields a r e  parallel, then one mode i s  still separable, pro- 
vided new variables - vorticity, and two-dimensional divergence - are chosen; no new 
choice of variables leads to decoupling in the general case. Once the gravitational and 
magnetic fields a r e  at an angle, the V mode i s  no longer separable. In this case, the 
vorticity about the line of force involves a component of velocity along the direction of 
the gravity, and this in turn implies pressure and entropy variations.. The transverse 
mode also involves a component of velocity along the gravitational field. A further com- 
plication is that the axial symmetry i s  lost, and the slowness surfaces a r e  triaxial. 

The effect of a gravity field at an arbitrary angle to the line of force i s  studied by 
taking the lines of force parallel to x1  and g ( a z / d x l )  parallel to x 3 .  The distribution of 
density i s  assumed to be the result  of gravitational forces only. The relevant equations 
a r e  then 

J 
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Before considering the dispersion relation for the complete set of equations, Equa- 
The dis- tions 25 through 28 a r e  examined under the approximations p << 1 and a 2 y .  

persion relations give 

(w’ - N’ - C: k:) w 2  - C z  (k: t k: 

C z  (w’ - C: k:) 
k; = 

( w 2  - C: k:) Lw’ - N2 - C z  (k: + k;)] 

C: (w’  - N’ - C k ’ k: = 
A 1 )  

where the loss  of symmetry is evident. We note that for w >> N the propagation i s  a 
spherically spreading Alfv& wave. 

Since the propagation is asymmetric, it is useful to consider the diagnostic diagram 
in two projections. Figure 13 illustrates the a-k, projection (Equation 29) of the diag- 
nostic diagram. The shaded regions correspond 
to those regions in which k; > 0 for a fixed value 
of k,. The lower region is bounded by the line 
w = C,kl. The upper boundary is given by 

provided that 

N k 2 < - .  
c.4 

At large values of the wave number k,, the 
upper boundary of the lower region of allowed 
propagation asymptotically approaches the line 
o = C,k,. This line c o r r e s p o n d s  to a one- 
dimensional Alfvkn wave propagation. In the lower 
shaded region, k3 varies  from zero to infinity, and Figure 13- Diagnostic diagram for p = 0; 

males.  The w-k, proiection i s  at a fixed in this region the perturbed V mode spreads out thegravityand magnetic fields are at right 

about the line of force because of the action of varue k, with CAk;’< N .  



gravity. Furthermore, the curvature of the bounding l ines indicates that the propagation 
is dispersive. 

The upper region is bounded by the curve 

This curve asymptotically approaches w = C,k, at large values of k ,  . The propagation 
in this region corresponds to a perturbed T mode. If k ,  > N/C,, the diagnostic diagram 
takes the form given in Figure 14. The lower region of allowed propagation is divided 
into two at w = N. Its upper boundary is given by Equation 32 and its lower boundary by 
Equation 31. A s  in the case of k ,  < N/C,, the bounding curves asymptotically approach 
w = C,k,. 

The diagnostic diagram corresponding to Equation 30 is shown in Figure 15 .  The 
parameter k, is taken as fixed parameter and the allowed regions in the w - k , - k ,  space 
a r e  projected. The k, parameter becomes very large along the line given by Equation 32, 
and vanishes along the line w = C,k, and along the curve fixed by the equation 

w2 = N2 + C; (k: + k:) , 

The propagation in the upper region will be nearly spherical, while the propagation in the 
lower region corresponds to a one-dimensional wave spreading about the line of force. 
A s  K~ becomes small, the lower region of allowed propagation shrinks to a double valued 
boundary line. 

The representation of the slowness surfaces corresponding to the diagnostic dia- 
grams Figures 13 through 15 is difficult because of the essential three-dimensional char- 
acter of the propagation. Furthermore, the representation of the constant phase surfaces 
with several cuspidal edges is not easily managed. The equation of the slowness surface 
is 

k p  + [k: + k: - 1 2 ( 2  - a2)l k: + I 2 [ I 2 ( 1  - a,) - 

where a is given by a = N/w; and I is given by I = w/c,. Figure 16 gives a schematic 
representation of the slowness surface for N/U = 0.5 .  

The two sheets of the propagation surface a r e  shown in Figures 17 and 18. Figure 17 
is a projection of propagation surface (Equation 33) on to the k , - k ,  plane. The complete 
surfaces a r e  obtained by reflection across  the coordinate planes. The lower region of 
the diagnostic diagram (Figure 13) collapses into a line for  k, = 0, and the propagation 
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Figure 16 - Slowness surfaces for perpen- 
dicular gravity and magnetic f ield at 

= 0. A complete surface i s  obtained 
by ref lect ion across the coordinate planes. 

of the V mode is one-dimensional at all frequen- 
cies. The upper region corresponds to a spheri- 
cally spreading mode, a perturbed T mode. The 
k, = 0.5 cut shows that the V mode has  now 
spread about the k, axis; there  is a parabolic point 
in this plane and a corresponding cuspidal edge in 
the phase surface. The T mode is a triaxial ellips- 
oid, as is evidenced from the k, = 0 . 5  and 0.9 

cuts through the phase surface. As  k, becomes 
larger ,  the V mode slowness surface shows a 
greater curvature. 

Figure 18 is the projection of the slowness 
surface onto the k,-k, plane. For large values of 
k, the propagation becomes nearly one -dimensional 
along the k ,  axis and there is no T mode, Note that 
at k, = 0 ,  the two sheets of the slowness surface 
intersect (see Figures 1 5  and 16). 

At lower frequencies ( w  < N) there is only a single propagating mode. The projec- 
tion of the slowness surface on the k,-k,plane is shown in Figure 19. The propagation 
is one-dimensional at Alfvkn wave velocity along the line of force for k, = 0.  At higher 
values of k, the propagation spreads about the K ,  axis, so that for large values of k, the 
propagation is along the x , axis. In the presence of a gravitational field, the propagation 
at  very low frequencies takes the form of waves spreading about the direction perpen- 
dicular to the lines of force. The k,-k, plane cuts the slowness surface along a hyper- 
bola, while the k,-k,  projection is a modified circle.  

The dispersion relation for finite p is 

t 1 4 [ k 3 2  t k:(1 - rZ) t l6(yZ - I)] . 
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turbed V mode propagation, the sphere to T mode propagation. 
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Figure 20- Slowness surface for a perpen- 
dicular gravitational and magnetic f ie ld  at 
,O = 0.5. The slowness surfaces consist of 
three sheets corresponding to the perturbed 
P, V, and T modes. 

The corresponding slowness surfaces show fea- 
tures  similar to both those of Figures 6 and 8 and 
of Figures 17, 18, and 19. The slowness surfaces 
a r e  composed of three sheets: two corresponding 
to nearly one-dimensional propagation, and a third, 
a triaxial ellipsoid, corresponding to the propaga- 
tion of the gravitationally perturbed T mode. The 
projections on the k, -k3 plane of the sheets for 
the case of ,O = 0 . 5  and y = 0.5 is shown in Fig- 
ure  20. The projection at  large values of k, shows 
the two nearly one-dimensional P and V mode 
propagations. The V mode propagation for k, = o 
i s  strictly one-dimensional along the direction of 
the magnetic field. The slowness surfaces show 
curves of parabolic points both in the V and P 
modes, and these transform into cuspidal edges 
in the constant phase surfaces. 

The transition between the perturbed P-V-T 
modes and the gravitational modes for finite p is 
shown in Figure 21. For y = 0.9 the triaxial 
ellipsoid representing the perturbed T mode has  
shrunk to a surface about the origin; the corre-  
sponding phase velocity is higher than in the 
absence of gravity. The phase velocity of the per- 
turbed V mode in the k, direction increases with 
increasing y while the phase velocity of the per-  
turbed P mode decreases.  

At the transition frequency ( y  = 1.0) there is 
no propagation in the T mode and only the 
one-dimensional highly perturbed V and P modes 
remain. The slowness surface for the P mode r e -  
mains very nearly a plane at all values of k,, but 
the V mode propagation undergoes spreading at  
intermediate values of k,. As the frequency de- 
creases,  the V mode is propagated along the direc- 
tion perpendicular to the lines of force, while the 
much perturbed acoustic mode (P mode) remains 
one-dimensional along the direction of the mag- 
netic field. 



37 

Gravity renders  the propagation dispersive. In the presence of perpendicular mag- 
netic and gravitational fields the constant phase surfaces corresponding to the gravita- 
tionally perturbed P and V modes show cuspidal edges corresponding to the curves of 
parabolic points on the slowness surfaces. The disturbance tends to be concentrated at 
the cuspidal edges and the conical point, so that a planar projection of the disturbance 
would show a disturbance in the form of an ellipse, with a central point. The dispersion 
is such that for frequencies less  than N,, the lower frequency components travel at a 
greater phase velocity than the higher frequency components. The effect of gravity in the 
case of both parallel and perpendicular gravity and magnetic fields is to couple the modes 
in a complicated way at frequencies l e s s  than the critical gravitational frequency N,. 
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CONTINUUM APPROXIMATIONS 

The exosphere is a low density, partially ionized gas. A description of waves in the 
exosphere by the equations of magnetohydrodynamics implies that the gas can be treated 
as a continuum. In a rarified neutral gas the continuum equations would apply, provided 
that the length scales of the phenomena were large compared with the mean free paths. 
However, the wide range of physical phenomena involved in an ionized gas does not per- 
mit a simple working rule defining the limit of applicability of the continuum equations. 
The problem is particularly vexing in the exosphere, since conventional cri teria indicate 
that a wide range of processes do not satisfy the conditions of either a continuum o r  a 
kinetic theory. An exploration of the problem would require a development of the pre-  
dictions of the continuum theory and their comparison with experiment. A s  an example, 
the continuum theory makes certain suggestions regarding the effect of a satellite on the 
exosphere. Experimental tes ts  of these predictions would allow an estimate of the appli- 
cability of the continuum theory to other phenomena having comparable length scales. 

The sound wave velocity c, = -r/y,/p is about 1 to 3 km/sec in the exosphere. The 
Alfvkn wave velocity C, is much larger ,  ranging from several hundred to several thou- 
sand km/sec. The ratio pof these two velocities is a small number, on the order of lo-* 
to lo-'. The ratio of the charged particle pressure to the magnetic pressure,  ~ 2 / 8 n ,  is 
of the order of P z .  Thus, over the entire exosphere, the magnetic pressure dominates 
the particle pressure.  It should be noted that the usual interpretation of the Alfven 
velocity as a propagation speed of transverse waves along magnetic force lines in an 
incompressible fluid requires that the Al fvh  wave velocity be much less  than the sound 
wave velocity. When the opposite holds true,  then the Al fvh  waves must be reinterpreted 
as one -dimensional propagations of vorticity and the spherical propagations of the trans - 
verse components of velocity. 

The P mode involves the propagation of fluctuations in charged particle pressure.  It 
would seem that the characteristic 'length limiting the continuum approximation is the 
length over which an appreciable portion of particle momentum is exchanged. The V and 
T modes involve the propagation of the transverse components of the velocity. Because 
of the magnetic field, however, the charged particles spiral  about the lines of force. 
Thus the motion of the charged particles in directions at right angles to the lines of 
force is greatly restricted,  while the motion along the lines of force is largely independ- 
ent of the magnetic field. It would be expected, then, that the characteristic length 
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signifying applicability of the continuum approximations would involve the radius of gyra- 
tion. The fact that different length scales are involved in the different modes is inti- 
mately connected with the anisotropic nature of the wave propagation. Thus, there may 
be conditions for which V and T mode propagation may take place, yet there would be no 
P mode propagation. 

In a partially ionized gas there are several mean-free paths corresponding to 
neutral-neutral collisions, neutral-charged particle collisions, etc. Inelastic processes, 
such as ionization and recombination, introduce further complications. The neutral- 
neutral mean free path is the distance a neutral particle must travel before it exchanges 
its momentum by a direct  collision with another neutral particle. The difference between 
the neutral-neutral mean free path and the neutral-charged particle mean free path is 
small. Over the entire exosphere the neutral gas mean free path exceeds several kilo- 
meters  and is large compared to other lengths that characterize the motion of charged 
particles. It is because of this large difference in the representative length scales of 
neutral and charged particle gases that the two gases a r e  usually assumed to act inde- 
pendently. However, for large disturbances in the lower exosphere this no longer holds 
true, and the influence of the neutral molecules on the wave propagation must be 
considered. 

A s  a result  of the Coulomb interactions a charged particle' exchanges i ts  momentum, 
not by single collisions, but in small bits through distant interaction. Because of the 
small but frequent exchanges of momentum, a particle may transfer an appreciable por- 
tion of its momentum in distances that a r e  short compared to the distance a particle 
must travel to exchange all of its momentum. In the calculation of the charged particle 
mean free path (References 30 and 31) the angular deflection in the path of the particle 
traveling at  a velocity V relative to a given particle is computed as a function of the dis- 
tance between the two. A particle traveling a distance r will, on the average, come to 
within a distance s = l/ni7ir''2 where ni is the charged particle density. The loss  of 
directed momentum is obtained by summing up over encounters a t  different distances of 
separation. The lower limit of the integration is taken as zero, corresponding to direct 
but highly improbable collisions, while the upper limit is taken as the Debye 
length i f  . 

The interpretation of the Debye length is the distance over which the removal of all 
charged particles of one sign would result  in an electric field comparable to kT. The 
Debye length ranges from a few tenths to a few tens of centimeters in the exosphere; 
this implies that a charged particle can interact with another charged particle at dis- 
tances of l o 6  to 10 particle diameters away. The distance an electron must travel in 
order  to exchange all of its momentum is then given by 

[h(l + 4 1  - l  , 
1 (3kTI2 - - 

l m  - h i  e2 
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where 

3 (k3T3) t a = - .e3 2 m 

Alternatively, the distance I x  a particle must travel to exchange a fraction x of i t s  initial 
momentum is 

where 

v being the velocity component perpendicular to the initial motion of the particle and V 
being the thermal velocity. The quantity I n ( a  + 11 is about 10 to 20 in the exosphere 
(Reference 31). Thus, the elementary theory of the particle interaction states that the 
distance a particle must travel to exchange a fraction x of i ts  momentum depends on the 
square of the proportional change in momentum. 

The interpretation of the V mode as the propagation of vorticity along the line of 
force implies that the condition for the continuum approximation to hold is that the dis- 
turbance have a large length scale as compared to the root-mean-square of the spiral  of 
the ions about the line of force. The Larmor radius is (kTmi) ' / 2 / e B ,  where m i  is the mass 
of the charged particle. We can also interpret the Larmor radius as the length over 
which the particle pressure nkT is comparable to the magnetic Lorentz force Bne(kT/m)"'. 

In a strong field, a dilute gas has a Larmor radius much smaller than the mean free 
path. Collisionless hydromagnetic waves a r e  then propagated through the intervention of 
the external field. 

We now consider the applicability of the continuum equations for two models of the 
exosphere, in both of which the magnetic field is taken to be that of the dipole with an 
equatorial surface field of 0.315 gauss. Two distributions of charged particle density 
a r e  considered. The high density model is that proposed by Dessler, Francis, and 
Parker  (Reference 12) and based on the ion density values of Johnson (Reference 32). 
Johnson has calculated the ion distribution in a gravitational field above the F 2  layer 
assuming diffusive equilibrium. The model gives a maximum ion number density of 
1.1 x l o 6  particles/cm3 at  an altitude of 2.5 lo4 kilometers and 400 particles/cm3 at 
an altitude of 2.5 x l o 4  kilometers. The molecular weight of the lower exosphere is 16, 
decreasing rapidly to 1 in the region from 1000 to 2500 kilometers. The assumed 
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magnetic field and density distribution combine to yield the variation of Alfvbn wave 
velocity shown as the high density model in Figure 22. 

An alternative model of the exosphere has been constructed to indicate the range of 
possibilities. Hanson and McKibbin (Reference 33) have carried out an ion t rap meas- 
urement of the ion concentration profile in the region from 240 to about 800 kilometers 
in an early- evening rocket launching. Above 3 50 kilometers the concentration profile 
approximates a hydrostatic distribution of ions of mass 16 at a temperature of 1240°K. 
Smith andHelliwel1 (Reference 34) have obtained an electron density of 100 electrons/cm3 
at 5 earth radii using nose whistlers. This value is in good agreement with the deter- 
mination of Blackwell and Ingham (Reference 6) of outer coronal densities. The whistler 
values suggest somewhat lower densities than those used by Dessler, Francis, and 
Pa rke r .  The low density model is based, at large distances, on the whistler data; and in 
the lower exosphere, on the rapid determinations of Hanson and McKibbin. The hydro- 
static calculation at  1300°K has been carried out with assumptions regarding the varia- 
tion of ion composition similar to those used by Johnson, with 1300°K a s  the temperature. 
The magnetic field and density combine to give the low density model variations of the 
Alfven wave velocity shown in Figure 22. 

The rms  Larmor radius depends only on the mean molecular weight, temperature, 
and magnetic field. For an isothermal exosphere at 1300°K the two models lead to simi- 
lar r m s  Larmor radii, as is shown in Figure 23. At an altitude of 30,000 kilometers the 
r m s  Larmor radius is about 100 meters. 

, I .  
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Figure 22 - The variation of equatorial Alfvkn wave velocity for two models of the 
exosphere 
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Figure 23 - Variation of the rms Larmor radius for positive ions in the exosphere 
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Figure 24 - Average distance a particle travels in exchanging 1 percent of its ini- 
tial momentum shown for two models of the exosphere 
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Figure 24 shows the approximate distance an electron travels in exchanging one per- 
cent of its initial momentum. The mean free path is then l o 4  t imes the listed values. 
We note that in the outer exosphere of the high density model, a charged particle travels 
about one kilometer before exchanging 10 percent of its momentum; in the lower exo- 
sphere, it exchanges 10 percent in a distance on the order of meters.  

The interpretation of Figures 23 and 24 is that for disturbances having a large length 
scale as compared to the distances plotted, the continuum equations yield at least  a quali- 
tative description. At distances that are small compared to those given, the problem 
should be treated either from the point of view of a self-consistent field theory or from 
a kinetic theory. It should be noted that the T and V modes, but not the P mode, might be 
excited by disturbances having an intermediate length scale. 

The applicability of the macroscopic equations has been dealt with in te rms  of length 
rather than frequency collision time. The characteristic length can be converted into a 
characteristic frequency collision time provided that the disturbance has a characteristic 
macroscopic velocity. 

In summary, the propagation of the T and V modes can be treated by the continuum 
equations at least  qualitatively, provided that the disturbance has a long length scale as 
compared to some hundreds of meters in the outer exosphere and some tens of centi- 
meters  in the lower exosphere. The P mode propagation will be qualitatively described 
by the continuum approximation, provided that the length scale is large as compared to 
tens of meters  in the lower exosphere and tens of kilometers in the upper exosphere. 



PART V 

DESCRIPTION OF SOURCES 
. 

The gravitationally induced inhomogeneity of the charged particle density field does 
not enter into the description of a source, provided that the length scale associated with 
the source is small  as compared to the length scale of the inhomogeneities. Additional 
problems arise in a layered medium in that the inhomogeneities may lead to mode con- 
version. In the present section we will consider the description of sources in a homo- 
geneous medium. 

The sources of the P and T modes differ in an important way from a source gener- 
ating V waves: The source for the V mode must generate vorticity, while a pressure 
fluctuation is propagated in the P and T modes. A pressure fluctuation may arise from 
either the local injection of charged particles or heat. An example, in the exosphere, of 
such a pressure source would be the influx of ionizing radiation into a neutral gas, o r  
the motion of a satellite o r  missile through the charged particle gas. 

The region of allowed propagation of the V mode in the diagnostic diagram is con- 
fined to a line. This implies that the waves generated by a source characterized by a 
limited range of wave numbers wil l  have a narrow band spectrum. The allowed region of 
the T mode permits a broad spectrum. The P wave will be intermediate, though at  small  
values of p the allowed region is nearly a line. The character of the spectrum of a mag- 
netic disturbance can thus be used for a qualitative identification of the V and T modes. 

A pressure source can be described in terms of some characteristic length L. A 
source with a characteristic velocity v has a characteristic frequency V/L. A qualitative 
picture of the proportion of T and P modes generated by a pressure source havinga 
velocity vand a length L can be obtained from a consideration of the diagnostic diagram 
in Figure 1. 

At a given frequency, a source with a small  length scale (high characteristic wave 
number k) will  tend to have the energy concentrated near to the region of P mode propa- 
gation and, as a result, the source generates primarily P waves. At the same frequency 
a source with a larger length scale will generate primarily T waves. Qualitatively, the 
characteristic length of the source should be compared with the characteristic wave- 
length of the mode at a given frequency. This wavelength is of the order (L/V)C,, and 
(L/v)c, for the P and T modes, respectively. Thus, for a satellite having a length scale 
of a meter and traveling at 8 km/sec, the characteristic wavelength of the P mode is 
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about 10 centimeters, while that of the T mode is 300 meters.  The satellite under these 
conditions would generate primarily P modes, provided that the continuum conditions 
were met. 

The proportion of V waves that are generated by a given source depends on the 
strength of the vorticity source. Vorticity is generated by the breakdown of surfaces of 
discontinuity in the fluid flow. Surfaces of discontinuity can arise between fluids travel- 
ing at different velocities or when the fluid passes  over a solid. The characteristic 
aspect of vorticity generation is that one part  of the interior of the fluid is subjected to 
pressure for a ;time while the adjacent par ts  a r e  not. Surfaces of discontinuity may 
arise at the boundary of the pressure pulse generated by incoming ionizing radiation or 
by the breakdown of the finite amplitude front associated with the plasma reaching the 
earth’s field. In the case of satellites and missiles,  vorticity is generated by the exhaust 
in a region of partially ionized gas. The dimensions of a typical rocket suggest that a 
V wave is generated at a peak frequency of about 10 cps, i f  the burnout occurs in or 
above the ionosphere. The resulting signal would not undergo geometric attenuation, but 
at high frequencies conductivity losses a re  large.  An experimental verification is pos- 
sible by observation at the conjugate point to the launch site.  

Vorticity may also be generated in the wake of a satellite. The character of this 
wake is determined by the Reynolds number 

where is the kinematic viscosity and LM is the mean free path. If the Reynolds number 
is much greater than one, the wake is turbulent (Reference 35).  In the lower exosphere 
the Reynolds number is much less  than one and the wake is laminar, with vorticity dif- 
fusing to form a broad disturbed region. 

The validity of the foregoing comments regarding the effectiveness of a satellite as 
a source of magnetohydrodynamic waves depends on whether or not the medium can be 
treated as a continuum for disturbances having a length scale of the dimensions of a 
satellite. At  300 kilometers, the r m s  Larmor radius for the positive ions is of the order 
of a meter and a particle must travel about 3 meters in exchanging 10 percent of its 
momentum. Under these conditions we expect that a satellite having dimensions on the 
order  of meters  generates microscopic V and T waves, but that a continuum treatment of 
the P mode is only approximate. 

A quantitative theory of the relative proportions of P, V, and T waves generated by a 
given source depends on the detailed treatment of finite amplitude phenomena. For a 
weak source, an estimate of the relative proportions of P and T modes is possible 
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(Reference 27). We consider a pressure source Ps , 

P, (Xi, t )  = g t poc,2 (2 + 3 ax2 t ") ax3 

which has  the units of dynes/cm2 per second. This pressure source is related to a mass 
source and to the net accession of heat by 

where q has units of ergs/gm per  second and S has the units of gram/cm3 per second. 
The pressure source P, will not generate vorticity. 

Eliminating v i  and p from the field equations (Equations 14 through 17) we obtain 

where R i s  the two-dimensional divergence 

Equations 35  and 36 combine to yield 

The space-time Fourier transform of the source te rm for the two-dimensional divergence 
is then 

1 - -  0 2 ( k 2  - k:) F.T.(P,) , PO (37) 
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av3 and the corresponding Fourier transform of the source for ax is 
3 

-%(a2 1 - Ctk') k: F.T.(P,) * 

The source te rms  can also be written in terms of the net accession of mass and heat by 
using Equation 34. 

A point in space and time has a constant Fourier transform of P,, all wave numbers 
and all frequencies being equally represented in the source. A ,murce that is a point 
source in time but is isotropic in space with a length scale L may be represented by 

k2L2 
F.T. (P,) = 

8n3 

corresponding to a Gaussian pressure field distribution about the origin. A source with 
the characteristic frequency w would include the 6 function at that frequency. 

The source te rms  (Equations 37 and 38) make their greatest contribution to a wave 
at  those values of wave number and frequency that l ie on the slowness surface. The 
slowness surface for the T mode is approximately 0 = C,k, and the source te rm for the 
P mode (Equation 38) vanishes. Along the slowness surface for the P mode 

so that the greatest contributions f .  7m the source te rm of the P mode result when 

2 2  Since k 2  e-k 

t e rm to the P mode is for 
l4 has amaximumat k = (2LI - l  the greatest contribution of the source 

Small sources a t  low frequencies thus contribute most heavily to the P mode. The con- 
tribution of the source (Equation 37) to the T mode at  a fixed value of k, ,  is greatest for 
k = ( 2 ~ 1 - l  and at  high frequencies. 
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The foregoing representation of the source is, in a sense, conventional and applica- 
ble only if  the discontinuity in pressure is not too great. For a large discontinuity, the 
source region will be turbulent. Turbulent interaction will lead to a complex source 
function. In addition to the direct  generation of P and T modes by the ac'tion of pressure 
or  entropy sources, vorticity can generate the P mode, as can temperature irregularities. 

c 

A s  an example of some of the difficulties introduced in treating strong sources, we 
consider the Argus experiments (References 36 and 37).  In these experiments approxi- 
mately 10'' e rgs  of energy were released at  a height of about 450 kilometers. The 
time behavior of the source is well represented by a 6 function, but there is no unique 
length scale. We might, for instance, consider the length as determined by the distance 
over which the initial pressure pulse must spread in order  to attain the ambient pressure.  
The initial pressure of the charged particles is on the order of lo'' dynes/cmZ, so that 
the indicated length scale would be of the order  of 1000 kilometers. This length is large 
compared to the variation in charged particle density, so that the source cannot be con- 
sidered isotropic. 

A source with a length scale of 1000 kilometers would generate T waves with a peak 
frequency of a few tenths of a cycle per second. The observed f i rs t  pulse appears to 
have been peaked at around one cps (Reference 37). In addition, the source should have 
generated low frequency P waves; but no attempt was made to detect such a mode. The 
turbulence associated with the outgoing shock should have generated vorticity leading to 
V wave propagation, and there is some indication that these waves were excited: a 
sinusoidal waveform at about one cycle per second was observed at the conjugate point 
to the explosion. 

Berthold, Harr is  and Hope (Reference 38) find that the amplitude of the low frequency 
magnetic signal generated by Argus was greatest along the geomagnetic meridian. The 
signal strength fell off rapidly as the direction of propagation deviated from the geomag- 
netic meridian. Such an amplitude pattern is consistent with V mode propagation without 
geometrical attenuation along the line of force into the ionosphere. The propagation in 
the atmosphere was then a radially spreading electromagnetic wave, badly disturbed by 
the partially conducting lower and upper boundaries of the atmosphere. 



PART V I  
SPECTRUM OF MAGNETIC DISTURBANCES 

The spectrum of a hydromagnetic disturbance will be determined primarily by the 
source characteristics. The high frequency cutoff is fixed by the Larmor radius at the 
source (Reference 8). In the lower exosphere the Larmor radius is of the order of 
meters,  and the corresponding cutoff frequency for  the V and T modes is on the order of 
100 cycles per second. Higher frequency waves will be propagated as modified electro- 
magnetic waves. In the outer exosphere the Larmor radius is on the order of lo4 centi- 
meters,  and the corresponding cutoff frequency is on the order of a few cps. Thus, the 
high frequency cutoff of a magnetic disturbance can serve as an indication of source 
location. The ground level distinction between waves that have propagated as electro- 
magnetic waves from source to receiver and those that have traveled as hydromagnetic 
waves to the base of the ionosphere and then as electromagnetic waves can be made on 
the basis of travel times. The source dimensions and time scale will determine the 
character of the initial onset: A source with a large length scale will principally gener- 
a te  the high frequency T mode, and some low frequency P mode; and the proportion of V 
mode will  depend on the sharpness of the discontinuity. The V mode may be identified by 
i ts  characteristic narrow band spectrum. 

At low frequencies it is possible that hydromagnetic modes modified by gravity be- 
come important. The characteristic gravitational frequency N, as a function of altitude 
is shown in Figure 25. In the lower exosphere this characteristic frequency has a period 
of the order of 10 minutes, while in the upper exosphere i t  is on the order of 15 hours. 
For  frequencies that a r e  large compared to this characteristic frequency, the propaga- 
tion is in the unperturbed P, T, and V modes. There will  be a gap in the spectrum at 
those frequencies separating the gravitational modes from the transverse modes. (See 
Figures 5, 13, 14, and 15). 

The presence of the boundaries in the system opens the possibility of trapping of the 
energy in a given mode. At the lower boundary of the exosphere, there is a rapid varia- 
tion in the charged particle density. However, there is no evidence for the existence of 
an upper boundary; the charged particle distribution grades into the interplanetary o r  
coronal density. It thus appears unlikely that the T mode can be trapped in a resonant 
cavity formed by the lower boundary of the exosphere and the disordered outer regions 
where the earth's magnetic field ends and the interplanetary field begins. 
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ALTITUDE (10%~) 

Figure 25 - Variation of the c r i t i ca l  frequency N ,  as a function of alt i tude 

The P mode will be propagated one-dimensionally along the lines of force, since p is 
over the entire exosphere. The propagation is similar to the on the order of lo-' to 

propagation in a pipe with a bulge in the middle. Because of the density contrast in the 
FZ regions, the P modes can be trapped along the line of force and it is possible that a 
free oscillation or standing wave could be set  up. The period of such a standing wave 
would be on the order of several  hours to a day. These long period vibrations require a 
consideration of the rotational effects, particularly the Coriolis force, and these have not 
been included in the foregoing formulation. In addition, viscosity is of considerable im- 
portance since it varies as the mean f r ee  path, and the latter differs by a factor of l o 3  
between the lower and upper exosphere. Thus the possibility exists that a free oscilla- 
tion in the P mode may be set up, though rotational and viscous effects will be of great 
importance. 

The V mode propagates vorticity along the line of force. The rapid variation of 
charged particle density at both ends of the line of force suggests that energy could be 
partially trapped, leading to a free oscillation in the V mode. Since the charged particle 
density var ies  continuously, the mode will be a leaky mode with energy passing through 
and radiating out as an electromagnetic wave at the end of the line of force. A rough 
estimate is obtained by taking the wave impedance as proportional to ~ 1 ' 2 .  The density 
contrast in the ionosphere then suggests a Qfor this mode of oscillation on the order of 
10, all internal losses  being neglected. 
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A direct calculation of the free  period of this mode of oscillation is straightforward. 
The equation for the propagation of vorticity 

where x is the distance along the line of force, is a one-dimensional wave equation with 
a variable phase velocity. The boundary conditions depend on the details of the physical 
process at the two ends of the lines of force. If the proportion of energy leaking out of 
the mode is small, then the boundary condition is that the vorticity vanishes. The alti- 
tude at which vorticity vanishes is fixed by the condition that the charged-neutral particle 
collision frequency be high compared to the Larmor frequency. It should be noted 
that the vanishing of the vorticity implies the vanishing of a current along the line of 
force. Under these conditions, the eigen frequencies of a uniform system a r e  f n  = nCA/2L, 

where L is the length of the line of force and n is the number of the overtone. 

Calculations have been carried out to determine the free periods for V mode oscilla- 
tions for a variable C, amploying the two models of the exosphere. The results a r e  
shown in Tables 1 and 2 where the periods are listed as a function of geomagnetic lati- 
tude. These calculations do not take into account the possible leaking of energy out the 
end of the line of force. 

The sharp maximum in the Alfv6n wave velocity at altitudes of about 3000 km (see 
Figure 22) may allow the trapping of energy between this maximum and the F2 layer. The 
characteristic periods (Tables 3 and 4) a r e  shorter than the periods of oscillation along 
the whole length of the line of force. 

Table 1 

Free  Periods of Oscillation in the V Mode for the High Density Model 

Geomagnetic 
Latitude 

(degrees) 

30 
35 
40 
45 
50 
55 
60 

n =  1 

14.2 
12.0 
11.0 
14.5 
29.1 
67.3 
184.6 

Period (seconds) 

n =  2 

12.8 
11.1 
9.98 
9.16 
11.0 
24.3 
64.8 

n =  3 

6.17 
5.47 
7.01 
8.69 
8.46 
15.3 
40.2 

n =  4 

5.65 
4.85 
4.35 
5.39 
8.12 
11.2 
29.4 
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n =  2 

4.75 
4.11 
3.67 
3.35 
3.11 
2.93 

Table 2 

Free  Periods of Oscillation in the V Mode for the Low Density Model 

n = 3  n =  4 

3.09 2.30 
2.67 1.98 
2.38 1.77 
2.17 1.61 
2.01 1.50 
1.89 1.41 

Geomagnetic 
Latitude 
(degrees) 

30 
35 
40 
45 
50 
55 
60 

Period (seconds) 

n =  1 

12.1 
9.98 
8.77 
8.63 

13.9 
29.2 
74.4 

n =  2 

10.3 
9.01 
8.04 
7.34 
6.95 

10.9 
26.4 

n = 3  

4.85 
3.99 
4.11 
6.00 
6.59 
7.10 

16.6 

n =  4 

4.39 
3.69 
3.24 
3.09 
4.98 
6.28 

12.1 

Table 3 

Periods of Oscillation for Energy Trapped Between F2 and Maximum 
in the C, Curve for the High Density Model 

Geomagnetic 
Latitude 

(degrees) 

35 
40 
45 
50 
55 
60 

Table 4 

Periods of Oscillation for Energy Trapped Between F2 and Maximum 
in the C, Curve for the Low Density Model 

Geomagnetic 
Latitude 

(degrees) n = l  

7.53 
6.66 
6.05 
5.65 
5.26 

Period (seconds) 

2.49 1.59 
2.31 1.47 
2.16 1.38 

n = 4  

1.46 
1.29 
1.17 
1.08 
1.02 
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A weak source located below the 3000 kilometer maximum would primarily excite 
the shorter period oscillations. Disturbances in the upper ionosphere associated with 
day-night effects may provide such a source. A sufficiently strong source in the upper 
exosphere would be expected to excite both the short  and long period oscillations. 

A detailed comparison between the computed and observed periods is difficult 
because the data presented, for example, by Benioff (Reference 14) and Troitskaya (Ref- 
erence 16) a r e  in the form of analog records. The obvious complexity of the spectra pre- 
cludes a zero-crossing analysis. The study of Tepley (Reference 39) shows micropulsa- 
tions with a frequency of 5 to 0.5 cycles per second, together with higher frequencies. 
These frequencies are higher than would be expected for a free mode oscillation at the 
geomagnetic latitude of Palo Alto. 
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